Pharmacokinetics and amyloid plaque targeting ability of a novel peptide-based magnetic resonance contrast agent in wild-type and Alzheimer's disease transgenic mice.
نویسندگان
چکیده
A novel magnetic resonance (MR) imaging contrast agent based on a derivative of human amyloid beta (Abeta) peptide, Gd[N-4ab/Q-4ab]Abeta 30, was previously shown to cross the blood-brain barrier (BBB) and bind to amyloid plaques in Alzheimer's disease (AD) transgenic mouse (APP/PS1) brain. We now report extensive plasma and brain pharmacokinetics of this contrast agent in wild-type (WT) and in APP/PS1 mice along with a quantitative summary of various physiological factors that govern its efficacy. Upon i.v. bolus administration, (125)I-Gd[N-4ab/Q-4ab]Abeta 30 was rapidly eliminated from the plasma following a three-exponential disposition, which is saturable at higher concentrations. Nevertheless, the contrast agent exhibited rapid and nonsaturable absorption at the BBB. The brain pharmacokinetic profile of (125)I-Gd[N-4ab/Q-4ab]Abeta 30 showed a rapid absorption phase followed by a slower elimination phase. No significant differences were observed in the plasma or brain kinetics of WT and APP/PS1 animals. Emulsion autoradiography studies conducted on WT and APP/PS1 mouse brain after an i.v. bolus administration of (125)I-Gd[N-4ab/Q-4ab]Abeta 30 in vivo confirmed the brain pharmacokinetic data and also demonstrated the preferential localization of the contrast agent on the plaques for an extended period of time. These attributes of the contrast agent are extremely useful in providing an excellent signal/noise ratio during longer MR scans, which may be essential for obtaining a high resolution image. In conclusion, this study documents the successful plaque targeting of Gd[N-4ab/Q-4ab]Abeta 30 and provides crucial pharmacokinetic information to determine the dose, mode of administration, and scan times for future in vivo MR imaging of amyloid plaques in AD transgenic mice.
منابع مشابه
Detection of Amyloid Plaques Targeted by Bifunctional USPIO in Alzheimer’s Disease Transgenic Mice Using Magnetic Resonance Microimaging
Amyloid plaques are a key pathological hallmark of Alzheimer's disease (AD). The detection of amyloid plaques in the brain is important for the diagnosis of AD, as well as for following potential amyloid targeting therapeutic interventions. Our group has developed several contrast agents to detect amyloid plaques in vivo using magnetic resonance microimaging (µMRI) in AD transgenic mice, where ...
متن کاملSPION-enhanced magnetic resonance imaging of Alzheimer's disease plaques in AβPP/PS-1 transgenic mouse brain.
In our program to develop non-invasive magnetic resonance imaging (MRI) methods for the diagnosis of Alzheimer's disease (AD), we have synthesized antibody-conjugated, superparamagnetic iron oxide nanoparticles (SPIONs) for use as an in vivo agent for MRI detection of amyloid-β plaques in AD. Here we report studies in AβPP/PS1 transgenic mice, which demonstrate the ability of novel anti-AβPP co...
متن کاملGadolinium-staining reveals amyloid plaques in the brain of Alzheimer's transgenic mice.
Detection of amyloid plaques in the brain by in vivo neuroimaging is a very promising biomarker approach for early diagnosis of Alzheimer's disease (AD) and evaluation of therapeutic efficacy. Here we describe a new method to detect amyloid plaques by in vivo magnetic resonance imaging (MRI) based on the intracerebroventricular injection of a nontargeted gadolinium (Gd)-based contrast agent, wh...
متن کاملIn vivo magnetic resonance microimaging of individual amyloid plaques in Alzheimer's transgenic mice.
The ability to detect individual Alzheimer's amyloid plaques in vivo by magnetic resonance microimaging (MRI) should improve diagnosis and also accelerate discovery of effective therapeutic agents for Alzheimer's disease (AD). Here, we perform in vivo and ex vivo MRI on double transgenic AD mice as well as wild-type mice at varying ages and correlate these with thioflavin-S and iron staining hi...
متن کاملMagnetic resonance imaging for monitoring therapeutic response in a transgenic mouse model of Alzheimer’s disease using voxel-based analysis of amyloid plaques
In this study, we have shown the potential of a voxel-based analysis for imaging amyloid plaques and its utility in monitoring therapeutic response in Alzheimer's disease (AD) mice using manganese oxide nanoparticles conjugated with an antibody of Aβ1-40 peptide (HMON-abAβ40). T1-weighted MR brain images of a drug-treated AD group (n=7), a nontreated AD group (n=7), and a wild-type group (n=7) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 322 2 شماره
صفحات -
تاریخ انتشار 2007